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AMBIGUOUS CLASSES IN QUADRATIC FIELDS 

R. A. MOLLIN 

Dedicated to the memory of D. H. Lehmer 

ABSTRACT. We provide sufficient conditions for the class group of a quadratic 
field (with positive or negative discriminant) to be generated by ambiguous 
ideals. This investigation was motivated by a recent result of F. Halter-Koch, 
which we show is false. 

1. INTRODUCTION 

The principal result is the provision of sufficient conditions for the class 
group of quadratic fields to be generated by certain prescribed ambiguous ide- 
als in terms of certain canonical quadratic polynomials. We were motivated by 
the principal result of [1], which contains a serious error. We therefore pro- 
vide a counterexample to Theorem 3.1 of [1], which motivates the discussion. 
Although the aforementioned result is false, we provide a list (which we conjec- 
ture to be complete) of all the polynomials which satisfy the prime producing 
hypothesis (but not necessarily the conclusion) of [1]. We maintain that this is 
of interest in its own right. 

2. NOTATION AND PRELIMINARIES 

Let Q(V'd) be a quadratic field, where d is a (positive or negative) squarefree 
integer, and let A = 4d/a2 be its discriminant, where a = 2 if d 1 (mod 4) 
and a = 1 otherwise. Thus the radicand d is the squarefree kernel of A. 

Let [a, fi] = aZ/ p f6Z; then the maximal order &A of Q(x/) is [1, W0A], 

where NA =(a - 1 + vfd)/or. It is well known that I is a nonzero ideal in 

&A if and only if I = [a, b+ cWA], where a, b, c e Z with clb, cla and 
acIN(b+cwA), where N is the norm, i.e., N(a) = al, where Zg is the algebraic 
conjugate of a. The ideal I is called primitive if c = 1 and a > 0 . In this case, 
a is the smallest positive integer in I and a = N(I) = (&A: I). Let CA denote 
the class group of &A. Equivalence in CA is denoted by I J (by which we 
mean that there are nonzero elements a1 and a2 of <A with a1 I = a2J). 
We denote the order of CA by hA, the class number of <A. Principal ideals 
(generated by a single element a) are denoted by (a). The following is well 
known. 
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Theorem 2.1. Every class of CA contains a primitive ideal I with N(I) < MA, 
where 

MA= 3 if A < 0, 
MA= z/ ifA >0. 

Based upon the above, the following improves upon Theorem 2.7 of [2]. 

Theorem 2.2. The class group CA is generated by the primitive prime ideals Y 
with N(A) < MA. 
Proof. By Theorem 2.1 there is an ideal I in each class with N(I) < MA. Each 
such ideal is divisible by a primitive prime ideal Y, and N(?) < N(I) < MA. 
The result now follows. El 

Throughout the paper, if q is a positive squarefree divisor of A, then d6q 
denotes the unique <A-prime ideal above q, or simply @ if no confusion with 
other divisors of A arises. 

3. PRIME QUADRATICS 

As mentioned above, we begin with a counterexample to Theorem 3.1 of [1], 
which motivates the discussion leading to criteria for CA to be generated by 
ambiguous ideals (given in terms of certain local primality conditions for the 
polynomials which we now define). 

Definition 3.1. Let q be a positive squarefree divisor of a discriminant A; then 

FA, q (x) = qx2 2+(a - )qx + ((c - )q2 - A), 

where a = 1 if 4q divides A and a = 2 otherwise. Also, set AA = 

L4(MA - l) 

Example 3.1. The claim of [ 1, Theorem 3. 1, p. 75] is that if, under the assump- 
tion of Definition 3.1, we have that IFA, q (x) I is 1 or prime for all integers x 
with 0 < x < AA, then CK = { 1, d} . The following example contradicts this 
assertion. Let A = 285 = 3 * 5 * 19 = 172 - 4 and q = 15; then FA,q(X) = 

15x2 + 15x - 1. Here, LMA =7 and AA =3,so IFAq(X)l = 1, 29, 89 and 
179 for x = 0, 1, 2, and 3, respectively. However, CA 7& {l, @15}. In fact 
d15 1 and CA = (e3) = (e5), where (x) denotes the cyclic group generated 
by x. 

Remark 3.1. For the interested reader the error in the proof of [ 1, Theorem 3.1, 
p. 75] lies in the assumption that (in Halter-Koch's notation) JZq is primitive. 
(For instance, in Example 3.1, )Aq = l5 and e3 f >; whence, gJfq = (325 
is definitely not primitive.) 

We have compiled in Table 3.1 a list of all positive radicands for which 
IFA,q(X)l is 1 or prime for all integers x with 0 < x < AA. Therein, the 
radicands 1085, 1965 and 2085 are also counterexamples to [1, Theorem 3.1]. 

Now we prove a result which gives sufficient conditions for CA to be gener- 
ated by ambiguous ideals. First we need a preliminary result which generalizes 
[2, Lemma 3. 1, p. 7]. 
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Lemma 3.1. Let q > 1 be a squarefree divisor of a discriminant A. If p is 
a prime, then FA,q(X) 0 O (mod p) for some integer x > O if and only if 
(A/p) =$ -1 and p does not divide q. 
Proof. If (A/p) :$ -1 and p = 2 does not divide q, then choose x = 0 if 
(q2(a - 1) - A)4q is even, and x = 1 otherwise. Now assume p > 2. Thus, 
there is an integer y such that A/q qy2 (mod p). By replacing y by p - y 
if necessary, we may assume that y a - 1 (mod 2). Setting y = 2x + a - 1, 
we get that A/q _ q(2x + a - 1)2 (mod p), i.e., 

FA, q(x)= qx2+ qx(a- 1)+ (( 1)q ) (mod2p) 

Conversely, if FAq(X) 0 O (mod p), then A _ [q(2x + a - 1)]2 (mod p), 
whence (A/p) : -1. Moreover, if p divides q, then p2 divides A, whence 
p = 2. Therefore, A 0 O (mod 4). If A _ 8 (mod 16), then qx2 -A/4q is 
odd for all x > 0, a contradiction. Therefore, A - 12 (mod 16), in which case 
(q2 - A)/4q must be even (since a = 2 and q is even in this case). Therefore, 
q2 = A (mod 16), whence (q/2)2- 3 (mod 4), which is absurd. El 

Theorem 3.1. Let qi > 1 for 1 < i < n be pairwise relatively prime, squarefree 
divisors of a discriminant A. If, for each prime p < MA with (A/p) =A -1 
and p 7& qi for any positive i < n there exists a q = Jj, qi for some 9' C 
{ 1, 2, ... , n} such that IFA, q(X)I =p for some nonnegative integer x, then 

CA = {1, @1d, .** , enl - 
Proof. By Theorem 2.2, CA is generated by the primitive prime ideals SD with 
N(?9) = p < MA and (A/p) :$ -1. If p :$ qi for any positive i < n, then by 
hypothesis, IFA q (X) I = p for some integer x > 0 (with q as above). Therefore, 
4(q(2x + a - 1)2 - A/q) = p. Thus, 1[(q(2x + a - 1))2 - A] = pq. Now set 

qx if a=1, 
b= qx+(q-1)/2 if a =2andqisodd, 

1 q(2x + 1)/2 if a = 2 and q is even. 

Hence, 9 = [pq, b + (A] is primitive with N(b + OA) = pq, i.e., 93 1 
(since, in fact, J9W = (b + WA)), whence 3 @, and the result follows. El 

Remark 3.2. The case where n = 1 in Theorem 3.1 provides a correct version 
of Theorem 3.1 of [1]. We note that the radicand 285 in Example 3.1 does 
not allow us to choose q = 15 because neither IFA, 1(x)l nor IFA, q (x) I yields 
the value 3 or 5 for any nonnegative integer x < AA = 3. However, if we 
choose q = 3 or q = 5, then the hypothesis of Theorem 3.1 is satisfied, since 
IFA,3(2)1 = 5 and IFA 5(1)1 = 3, with the observation that 3 and 5 are the only 
noninert primes less than MA. Therefore, we arrive at the correct conclusion, 
i.e., C285 = (d3) = (@5). 

Remark 3.3. Theorem 3.1 of [1] becomes correct under the assumption q = 

or q prime, qIDo, qtf. 
Now we give a sequence of examples to illustrate Theorem 3.1. 

Example 3.2. Let A = 1157 = 13. 89 = 342 + 1 and set q = 13. Since 
LMAJ = 15 and the only noninert prime p < MA with p 4 13 is p = 7, then 
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the fact that FA 13(1) = 7 implies that the hypothesis of Theorem 3.1 holds. 
Thus, CA = (W1 3) 

Example 3.3. Let A = 4 195 = 4 3 5 * 13; then LMAJ = 12 and AA = 6. 
Let q1 = 3 and q2 = 5. Since FA, 15(1) = 2, which is the only prime p < MA, 
p :A 2 with p noninert, then by Theorem 3.1 

CA = (W3) x (65). 

Example 3.4. Let A = 4 *3 5 * 7 * 11 = 4 1155; then LMAJ = 30 and AA = 14. 
If q1 = 3, q2 = 5 and q3 = 7, then the only noninert primes p < MA with 
p :$ qi for i = 1, 2, 3 are 2, 11, 17 and29. Since FA, 35(1) = 2, FA,l05(O) = 11, 
FA, 15(2) = 17 and FA, 21(2) = 29, then by Theorem 3.1 

CA = (63) x (65) x (67) . 

The following consequences of Theorem 3.1 show its high degree of applica- 
bility to results in the literature. 

Corollary 3.1 [3, Theorem 1, p. 655]. If A = 4(412 ? 2) > 8 and IFA 2(x) = 

12x2 - d/21 is 1 or prime for all integers x with 0 < x < v7/2, then hA = 1. 
Proof. By Theorem 3.1 and Lemma 3.1, CA = {l, e2}. However, e2 1, 
since IN((21 ? 2 + /)/2)1 = 2. E 

Corollary 3.2 [3, Theorem 2, p. 656]. If A = 4((21 + 1)2 ? 2) with I > 0 
and IFA, 2(x) = 12x2 + 2x + (1 - A)/21 is 1 or prime for all integers x with 
0<x<(V'-+1)/2, then hA= I. 

Proof. By Theorem 3.1 and Lemma 3.1, CA = {l ,2}. However, e2 1, 
since IN(21 + I + v)I = 2. El 

The following is [3, Conjecture 2, p. 658]. 

Corollary 3.3. Let A = 12 - q 5 (mod 8), where q is an odd prime dividing 
1. If IFA,q(X)l = Jqx2 + qx + (q2 - A)/4qI is 1 or prime for all integers x 
with 0 <x< v d- l-1/4 - 1 , then hA=. 

Proof. By Theorem 3.1 and Lemma 3.1, CA= {1, eq}. However, eq 1, 
since N(l + v) = q . El 

The following is [3, Conjecture 4, p. 659]. 

Corollary 3.4. Let A - 12 ? 4q, where q is an odd prime dividing 1. If 
1qx2 + qx + (q2 - A)/4ql is 1 or prime for all integers x with 0 < x < 
(v+1)- +1/2, then hA = I 

Proof. Since JN((l + v/A)/2)1 = q, then the result follows as above. El 

Remark 3.4. The types of forms in Corollaries 3.1-3.4 are called extended 
Richaud-Degert (ERD)-types, i.e., those of the form d = A/52 = 12 + r, where 
r divides 41. In [3, 4] we found all such A's with hA = 1 under the assump- 
tion of a suitable Riemann hypothesis, and in [5] we were able to eliminate the 
Riemann hypothesis and show that our list is complete (with one possible excep- 
tional value of A, whose existence would be a counterexample to that Riemann 
hypothesis). The following answers a question about ERD types posed in [1, 
Remark, p. 76]. 
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TABLE 3.1. This table lists all radicands 0 < d < 106 such that 
IFA, q(x)l is 1 or prime for all nonnegative integers x < AA, 
where q is a positive squarefree divisor of the discriminant A. 

d q d q d q d q 

2 1 26 2 93 3 402 6 
2 2 26 13 102 6 413 7 
3 1 29 1 110 10 437 1 
3 2 29 29 110 22 437 23 
3 3 30 6 122 2 453 3 
5 1 30 10 138 6 573 3 
5 5 30 30 141 3 645 15 
6 2 33 3 165 3 678 6 
6 3 33 11 165 5 717 3 
6 6 35 5 173 1 917 7 
7 1 35 7 182 14 957 3 
7 7 38 2 182 26 965 5 
10 2 38 38 213 3 1077 3 
10 5 42 6 222 6 1085 5 
10 10 42 14 230 10 1085 7 
11 1 42 42 237 3 1085 35 
11 11 53 1 258 6 1133 11 
13 1 53 53 285 5 1245 15 
13 13 62 2 285 15 1253 7 
14 2 66 6 293 1 1293 3 
14 7 69 3 318 6 1685 5 
14 14 77 7 341 11 1757 7 
15 3 77 11 357 3 1965 15 
15 5 77 77 357 7 2085 15 
21 1 78 6 362 2 2373 21 
21 3 85 5 365 5 2397 3 
21 21 85 17 398 2 4245 15 

Example 3.5. Let A = 917 = 7 131; then LMAJ = 13, AA = 6. The only 
noninert prime p < 13, p 7, is p = 11 and FA 7(2) = ll, so by Theorem 
3.1, CA = (%7). We note that 917 is not an ERD-type. The only other non-ERD 
type appearing in Table 3.1 is A = 341 . (Note that since IF341, I (I)M = 5, the 
only noninert prime p < M341 (with p :$ 1 1), then C341 = (1 1)) ) 

Although the principal result of [1] has been shown to be false herein, it is 
still of interest in its own right to determine all those positive A's and q's such 
that FA,q(X) is 1 or prime for 0 < x < AA . 

Some serious computational evidence leads us to pose: 

Conjecture 3.1. Table 3.1 is complete, i.e., if d > 4245, then IFA,q(X)l is COm- 
posite for some nonnegative x < AA . 

Remark 3.5. It is interesting to note that the only ERD types d, with class 
number 1, that do not appear in Table 3.1 are d = 17, 37, 47, 83, 101, 167, 
197, 227 and 677. Moreover, the only non-ERD types which are in Table 3.1 
are 341 and 917. Also, the values which have class number bigger than 1 are 10, 
15, 26, 30, 35, 42, 66, 78, 85, 102, 110, 122, 138, 165, 182, 222, 230, 258, 285, 
318, 357, 362, 365, 402, 645, 678, 957, 965, 1085, 1245, 1685, 1965, 2085, 
2373, 2397 and 4245, all of which have class number 2. 

We note that if FA,q(X) is 1 or prime for all integers x with 0 < x < AA, 
we cannot even guarantee that hA < 2. Given Remark 3.4 and Conjecture 3.1 
above, we must turn to negative discriminants. 
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Example3.6. Let A=-520=-23.5*13 andset q= 10,whence LMAJ = 13, 
and so AA = 6. Also, FA,q(X) = lOX2 + 13 = 13, 23, 53, 103, 173, 263 
and 373 for x = 0, 1, 2, 3, 4, 5 and 6, respectively. However, hA = 4. In 
fact, then CA # {1, @lo}. If in Theorem 3.1 we take q1 = 5 and q2 = 13, 
then FA,65(0) = 2, which is the only noninert prime less than MA (other 
than 5 and 13), so the hypothesis of Theorem 3.1 is satisfied and we have that 
CA = (d5) x (WI 3) . We observe that both FA, 5 (O) and FA, 13 (0) are composite. 
This illustrates that the generation of CA by ambiguous ideals dividing q, in 
general, has less to do with the prime-producing capacity of FA,q(x) for an 
initial string of x values, as asserted in [1], than it does with its local capacity 
to "hit" certain primes. 

We have made significant progress with negative discriminants and quadratic 
polynomials, which will be published at a later date. 
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